Itô isomorphisms for $L^{p}$-valued Poisson stochastic integrals

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of Banach space valued and parametric stochastic Itô integration

We present a complexity analysis for strong approximation of Banach space valued and parameter dependent scalar stochastic Itô integration, driven by a Wiener process. Both definite and indefinite integration are considered. We analyze the Banach space valued version of the EulerMaruyama scheme. Based on these results, we define a multilevel algorithm for the parameter dependent stochastic inte...

متن کامل

Third cumulant Stein approximation for Poisson stochastic integrals

We derive Edgeworth-type expansions for Poisson stochastic integrals, based on cumulant operators defined by the Malliavin calculus. As a consequence we obtain Stein approximation bounds for stochastic integrals, which are based on third cumulants instead of the L3 norm term found in the literature. The use of the third cumulant results into a convergence rate faster than the classical Berry-Es...

متن کامل

Cumulant operators for Lie-Wiener-Itô-Poisson stochastic integrals

The classical combinatorial relations between moments and cumulants of random variables are generalized into covariance-moment identities for stochastic integrals and divergence operators. This approach is based on cumulant operators defined by the Malliavin calculus in a general framework that includes Itô-Wiener and Poisson stochastic integrals as well as the Lie-Wiener path space. In particu...

متن کامل

Gaussian limits for vector-valued multiple stochastic integrals

We establish necessary and sufficient conditions for a sequence of d-dimensional vectors of multiple stochastic integrals Fd = ` F k 1 , ..., F k d ́ , k ≥ 1, to converge in distribution to a d-dimensional Gaussian vector Nd = (N1, ..., Nd). In particular, we show that if the covariance structure of F k d converges to that of Nd, then componentwise convergence implies joint convergence. These re...

متن کامل

Optimal sampling design for approximation of stochastic Itô integrals with application to the nonlinear Lebesgue integration

where T > 0 is a given number, a function f : [0, T ]× R → R satisfies certain regularity conditions and (Bt)t∈[0,T ] is a one dimensional Brownian motion on some probability space (Ω,Σ,P). Since in most cases explicit value of the integral (1) is not available, we must consider approximation schemes. We are interested in algorithms which use only discrete values of the driving Brownian motion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2014

ISSN: 0091-1798

DOI: 10.1214/13-aop906